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Self-organized criticality: Robustness of scaling exponents

Jozef Černák*
University of P. J. Sˇafárik, Department of Biophysics, Jesenna´ 5, SK-04000 Kosˇice, Slovak Republic

~Received 17 November 2001; published 10 April 2002!

We investigate a deterministic, conservative, undirected, critical height sandpile model with dissipation of an
energy at boundaries that can simulate avalanche dynamics. It was derived from the Bak-Tang-Wiesenfeld
model @P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett.59, 381 ~1987!# introducing an additional
second-higher threshold so the model has two distinct thresholds. Our computer simulations for a two-
dimensional lattice show that scaling properties of the model depend on the higher-threshold values and site
concentrations. These results are not therefore consistent with the present self-organized criticality hypothesis
where the scaling properties are independent of the model parameters.
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I. INTRODUCTION

Bak, Tang, and Wiesenfeld~BTW! developed a simple
model to describe the behavior of spatially extended dyna
cal systems—systems with both temporal and spatial deg
of freedom@1,2#. They introduced a theoretical framewor
the so-called self-organized criticality~SOC! as a common
underlaying mechanism of ubiquitous ‘‘1/f ’’ noise, self-
similar fractal structures, and turbulence. The SOC id
stimulated numerous experimental@3–11#, numerical@12–
24#, and theoretical@25–28# studies.

The sandpile was introduced as an example to illust
the basic idea of SOC in real systems@2#. The first tests of
the SOC model in granular materials have not confirmed
direct analogy between the dynamics of sandpiles and ph
cal systems exhibiting SOC@3,4#. These results led to th
conclusion@5# that granular materials do not show SOC a
it was proposed that first-order behavior may be the gen
result and SOC might be the exceptional situation. Fre
et al. @6# demonstrated experimentally the crossover fr
critical to noncritical behavior in a pile of rice. In one cas
for grains with a large aspect ratio the dynamics exhib
SOC, but not in another case for less elongated grains. T
concluded that SOC is not as ‘‘universal’’ as was initia
assumed@1,2#, and the detailed mechanisms of energy dis
pation plays an important role. Altshuleret al. @8# observed
that the nature of the sandpile base is a parameter which
modify the avalanche dynamics in slowly driven on
dimensional piles of beads. They also discussed the rol
quenched and unquenched randomness of the avalanch
namics.

The notion of sandpiles were not the only model syst
to study SOC. There are also many other real systems
exhibit avalanche behavior, for example avalanchelike p
nomena in magnetic materials@9,29#, and a simple stick-slip
process of dragging a sandpaper across a carpet@10#. In this
case the BTW model was extended to nonconservative
tems by replacing the updating rule so that the energy d
pation was occurring at any time scale. In a superconduc
a distribution of vortex avalanche sizes showed the pow
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law behavior over two decades, proving that the vortex
namics in the Bean state is characterized by avalanche
many length scales@11#. In these experiments the critica
exponents from avalanche size distributions were not c
stant but they depended on the biased external magn
fields.

Kadanoffet al. @12# numerically investigated scaling an
multiscaling behavior of one- and two-dimensional SO
models. They used different microscopic updating criteria
see their influence on the scaling and multiscaling propert
They observed the several universality classes and diffe
models with similar rules belong to the same class. All p
vious numerical models were defined with deterministic u
date criteria although Manna@13# changed the microscopi
dynamics using a stochastic relaxation rule that enables
pling of the sand in the randomly selected directions.

The nonconservative SOC model was introduced
Olami, Feder, and Chistensen~OFC! @15#. Their model dis-
played robust scaling behavior for different strength of d
sipation. On the other hand, the scaling exponent was n
universal and depended on the elastic parameter. This m
was thus used for a long time for systems that showed a
lanche dynamics described by a power law, but with a n
universal scaling exponent@11,23#. However, recent results
for larger lattices@24# than in the OFC paper@15# confirm
universality of the scaling exponent in a wide range of t
model parameter. This exponent agrees with the exponen
the GR model of earthquakes. Ja´nosi and Kerte´sz @16# influ-
enced by the OFC model investigated its properties in
framework of a sandpile. They observed a difference
tween the dissipative and conservative models when
quenched randomness in the threshold values was in
duced. They concluded that quenched randomness in d
pation models can destroy SOC, but if conservation
present, then disorder is irrelevant. Head and Rodgers@19#,
inspired by the experiments of Fretteet al. @6#, have devel-
oped a model which incorporates both individual particle a
cluster motions. This model exhibits avalanche distributio
described with stretched exponential or power-law dep
dence that agree with the rice-pile experiments@6#.

Zhang@25# introduced a variant of the BTW model wher
an energy is continuous. All the energy from an unstable
is distributed to the neighbors and after relaxation the
©2002 The American Physical Society41-1
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JOZEF ČERNÁK PHYSICAL REVIEW E 65 046141
remains empty. Dhar@26# generalized the BTW model intro
ducing a set of thresholds that are assigned to each site
proved that the critical height BTW model is a subclass
the mathematical structure,Abelian group, and named i
Abeliansandpile model~ASM!. If the configuration after the
avalanches does not depend on the order in which the re
ations of the active sites were performed, then the mo
belongs to the ASM. Later@27#, Dhar proved theAbelian
properties of the stochastic Manna’s model. Based on
renormalization-group transformation study, Pietroneroet al.
@28# concluded that both the deterministic BTW@1# and the
stochastic Manna’s model@13# belong to the same univesa
ity class and microscopic details of an energy relaxation h
no effect on the scaling properties. This conclusion starte
broad discussion about a classification of deterministic
stochastic ASM as well as all known sandpile syste
@18,20,22,23,30#.

The various models we have reviewed here thus sh
support or limited support for the SOC hypothesis. Amo
there, a few papers motivated us to test the robustnes
scaling properties~i! the conclusion about robustness of t
BTW model @2# and ~ii ! the rice-pile experiment@6,7#.

The paper is organized as follows. In Sec. II, the sand
model is defined. The results describing the avalanche
distributions such as scaling exponents, and average
lanche areas at different parameters are presented in Se
This section also contains a small part concerned with
noise properties of avalanche dynamics. We discuss ou
sults with simulations made previously in Sec. IV. In the la
section in Sec. V, we summarize our results and suggest
ous ways to explore them further.

II. DEFINITION OF MODEL

We follow a notation presented by Bihamet al. @23# to
define a sandpile model. Consider ad-dimensional hypercu-
bic lattice of linear sizeL. Each sitei has assigned a dynam
cal variableE( i) that generally represents a same physi
quantity such as energy, grain density, stress, etc. A confi
ration $E( i)% classified as stable if for all the sitesE( i)
,Ec , where Ec is a threshold value. In our model th
threshold valueEc is not constant, but depends on the s
position i, Ec( i). As consequence of this we have to gen
alize the condition for the stable configuration$E( i)% and is
now: E( i),Ec( i). There are many ways to defineEc( i), but
in our caseEc( i) has only two distinct values

Ec~ i!5H Ec
A52d

Ec
B52dk, k52,3,4, . . . ,

~1!

whered is a dimension andk is an integer number. For an
site i we define the thresholdEc( i) @Eq. ~1!# in such a man-
ner thatn randomly chosen sites have the higher valueEc

B

and the remainingLd2n sites have the lower valueEc
A . The

concentration of sites with higher-threshold valueEc
B is de-

notedc, andc5100n/Ld @%#.
Let us assume that a stable configuration$E( j )% is given,

and that we select a sitei at random and increaseE( i) by
some amountdE. When an unstable configuration
04614
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reached,E( i)>Ec( i), and a relaxation takes place. An u
stable sitei lowers energy, that this is distributed among t
neighbor sites. This event is described by the relaxation ru

E~ i!→E~ i!2(
e

DE~e!, ~2!

E~ i1e!→E~ i1e!1DE~e!, ~3!

(
e

DE~e!5Ec~ i!, ~4!

wheree is a set of vectors from the sitei to its neighbors.
The neighbors that receive an energy can become uns
and topple thus generating an avalanche. To the two w
known rules expressed in Eqs.~2! and ~3! that describe a
distribution of an energy, we added an additional rule Eq.~4!
that specifies the manner how an energy is distributed
pending on the site positioni, and corresponding threshol
Ec( i). This rule tells us that an energy equal to the discr
amount ofEc( i) is transferred from an unstable site to th
neighbors. Specifically, in our model there are two distin
amounts of transferred energy Eq.~1! to be considered. The
relaxation rules Eqs.~2!–~4! are applied until that momen
when a stable configuration is reached again, for all sitei,
E( i),Ec( i). Obviously, during one avalanche an arbitrar
unstable sitei can transfer the energyEc( i) a few times to be
stable, E( i),Ec( i). A d-dimensional lattice with open
boundaries has been investigated so an added energy
flow outside the system, and an energy dissipation ta
places only at boundaries.

This model has been designed to have the specific p
erties that could simplify it. It belongs to the critical heig
models@12,14# with conservative relaxation rules and an u
directed energy transfer~particle sliding! @12#. We character-
ize the model as deterministic with a frozen randomness
the thresholdsEc( i) @16#. This means that no quantity i
randomly perturbed as in other models@7,31,32#.

III. RESULTS

We shall here report the results obtained using comp
simulations of a deterministic, conservative, undirected, a
critical height sandpile@12,14# model defined by Eqs.~1!–
~4!. The simulations were carried out for the following p
rameters:d52, two-dimensional lattice of linear sizesL
5256 and 512, randomly added energydE51, lower-
thresholdEc

A54, higher thresholdEc
B58, 16, 32, 64, 128,

and 252, and with concentrations of sites with the high
threshold values in the rangec50.05250 %. The second
thresholdEc

B and concentrationc, are also considered a
model parameters. The model isnon-Abelian~Sec. IV! and
we therefore allow toppling only at one randomly select
site. Avalanches can be characterized by such propertie
their size, area, and lifetime@20,22,23#. We measure only
one property, the avalanche areaa that is the number of
lattice sites that have relaxed at least one during the a
lanche@1,23#.

The simulations in the two-dimensional lattice of the li
1-2
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FIG. 1. Computer simulations carried out on a two-dimensional lattice of the linear sizeL5256, with the lower thresholdEc
A54. ~a! The

exponentta versus concentration for various thresholdsEC
B58(*), 16(s), 32(!), 64(h), and 128(d). ~b! The average area of avalanch

^a& versus the concentrationc for different thresholdsEc
B . These curves show minima for certain parametersc andEc

B .
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ear sizeL5256 show that the avalanches have areasa that
can span a wide range of sizes up to the whole system.
distribution of avalanche areasP(a) obeys the power-law
P(a)}a2ta, as it was expected. For the model paramet
mentioned above we have determined the critical expon
ta , and they are shown in Fig. 1~a!. We can see that fo
small value of the higher thresholdEc

B , 4,Ec
B<16, the ex-

ponents weakly depend on the concentrationc. When the
higher values ofEc

B , Ec
B>32 are considered, the exponen

reach maxima at concentrationc'1%. We have observed
that for a concentration 0.05,c,1%, the curves deviated
from the expected power-law dependence due to the fact
it was not possible to fit the results to a power law. T
corresponding values of exponents are thus missing in
graph. We can therefore conclude that in this range of c
centrationc, the avalanche areaP(a) does not show scaling
properties.

The average avalanche area^a& is sensitive to the choice
of parameters, as it is presented in Fig. 1~b!. By increasing
the higher threshold valuesEc

B at a constant concentrationc,
one gets decreasing avalanche areas^a&. When concentration
c is changed at constantEc

B , Ec
B>16 we have observed de

creasing the avalanche areas^a& for concentrations 0.05,c
,10% down to a minimum, and subsequent increasing
ues when the concentration increases. In the concentra
range 0.05,c,10%, the equation̂a&}c2a is valid, and
wherea50.177 (Ec

B532), 0.271 (Ec
B564), and 0.388 (Ec

B

5128). By tuning these parameters, we can obtain a s
where the average avalanche areas^a& reach minima.

We have also simulated the model in a larger tw
dimensional lattice of linear sizeL5512 to eliminate the
effect of finite sample size on the characteristic expone
ta . The results are presented in the Table I. The charact
tic exponentsta are smaller than in the previous case wh
L5256, but it is reasonable to assume that they are close
the exact values. The dependence of the exponentsta on the
concentrationc at the higher thresholdEc

B5128 shows the
maximum exponentta51.451 at a concentrationc51%.
When the concentrationc increases toc52%, the exponent
decreases tota51.279, similarly as in the Fig. 1~a!. The
results concerning to the average avalanche area^a& obey
the power law^a&}c2a with a50.272 ~fit is valid for c
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5128 %) and are consistent with results presented in F
1~b!. Comparisons of two avalanche area distributionsP(a)
for two distinct concentrationsc51 and 8 % are presented i
Fig. 2. This shows that there is an essential difference
small avalanche areasa,1.83103. For the concentrationc
51% and avalanches in the intervala,1.83103, the ava-
lanche area distribution cannot be fitted to a power law.
larger avalanches 1.83103,a,23105, the avalanche area
distribution obeys the power law witht51.451. For a con-
centrationc58%, we see that ata'200 the slope of the
curve changes. A shift in the ratio between small and
avalanches towards smaller avalanches (a,200) was ob-
served. For larger avalanchesa.23103, the avalanche area
distribution is approximated by the power law with the e
ponent t51.279. Both avalanche area distributions th
scale for larger avalanches, but the scaling exponents are
universal and depend on the parameters.

We have analyzed the timeDt between two avalanche
@33# and the power spectrum of a signalX(t) generated by
the avalanche dynamics with an explicitly defined time sc
@32#. The time signal is given as

X~ t !5(
j

ajd~ t2t j !. ~5!

Here,aj denotes the area ofj th avalanches andt j is the time
of its occurrence. We denote the time between two a

TABLE I. Critical exponentsta , average avalanche areas^s&,
and characteristic timesDT0 for different thresholdsEc

B , and con-
centrationsc. The sandpile model is two-dimensional, conservati
undirected, and deterministic of a linear sizeL5512. The ava-
lanches which areas are from the intervala51.83103223105 are
considered to fit the critical exponentta .

Ec
B c ta ^s& DT0

128 1 1.451 1404 1.733
128 2 1.373 1135 1.797
128 4 1.318 937 1.919
128 8 1.279 808 2.153
252 10 1.279 419 2.289
1-3
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JOZEF ČERNÁK PHYSICAL REVIEW E 65 046141
lanches asDt5t j2t j 21. The original time signalX(t) is
transformed using the Fourier transform into the freque
domain. The square of the amplitudes of the transform
signal at a given frequency range define the power spect

S~ f !5 lim
T→`

1

2T U E
2T

T

dtX~ t !e2 i2p fU2

. ~6!

The resulting power spectrum is shown in Fig. 3 for t
parametersL5256, Ec

B5128, andc51% with no evidence
of 1/f noise. We see a short-frequency interval whereS( f )
;1/f 2. The fast Fourier transformation was computed fro
N5524 288 samples@34#.

We have observed that the distributionsP(Dt) of the in-
tervals Dt between avalanches exponentially decays
P(Dt)}exp(2Dt/DT0). The characteristic intervalDT0 is
sensitive to the change of a concentrationc and higher
thresholdEc

B , as is shown in Table I.
It was observed that the area distribution consists of th

main parts:~i! region of small avalanches,~ii ! regions of
intermediate, and~iii ! regions of larger avalanches that sp
whole sample. The boundary between small and intermed

FIG. 2. Comparison of the avalanche area distributionsP(a) for
two different concentrationsc51% andc58%, where the remain-
ing parameters are: the lower thresholdEc

A54, higher threshold
Ec

B5128, linear lattice sizeL5512. Corresponding exponents a
determined:ta51.45160.003 (c51%), andta51.27960.003 (c
58%) for avalanches from the intervala51.83103– 23105.

FIG. 3. The power spectrumS( f ) for a time signalX(t) defined
by Eq. ~5!, and f N is Nyquist frequency. The avalanche dynami
was generated by parameters:L5256, Ec

B5128, andc51%.
04614
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avalanches depends on the model parameters. The sc
exponentta determined in the intermediate region is not un
versal. The model does not show any evidence of 1/f noise.

IV. DISCUSSION

The critical point in SOC systems is an attractor which
reached by starting far from equilibrium, and the scali
properties of the attractor are insensitive to the parameter
the model. To reach this state no tuning of parameter
necessary from the outside, i.e., the system organizes i
@1,2#.

Bak et al. @2# tested the robustness of scaling exponent
the BTW model by removing as many as 25% of the latt
bonds, but the avalanche dynamics still led to a power-
distribution. By removing about 10% of the bounds, still n
change in the exponent was detected. This test confirmed
SOC hypothesis. We chose another type of defect in orde
increase the disorder in the BTW model. In our model th
is one of two distinct thresholds@Eq. ~1!# assigned to each
site. Lattice sitesi with a higher threshold are considered f
lattice defects. The model defined in such a manner ha
short-range spatial correlation introduced into the upd
rules. This means that the toppling of a defective site c
influence more than 2d sites as in the BTW model at on
relaxation. An unstable site also makes its surroundings
stable and not only neighbors and a collective toppling sta
A correlation length is proportional to the ratioEc

B/Ec
A . The

defect behaves as a local energy reservoir. It can absorb
discharge more energy than its neighbors, so the avalan
dynamics near defects is changed. We can observe the
ferent nature of the defects introduced before@2# and those
presented here. By removing bounds in a lattice, this cau
a permanent barrier to avalanche toppling and some par
a system remain inactive. On the other hand, a site wh
behaves as an energy reservoir enables avalanche spre
and can introduce a time delay~an accumulation of energy!
and short range correlations~a relaxation! into the dynamics
of the system. Our model displays unexpected proper
~Sec. III!, in that the avalanche dynamics depends on
choice of parameters. This finding disagrees with the S
hypothesis@1,2#.

The model is a special case of the ASM@26,27# when the
elements of the integer matrixD are defined asD i i 5Ec( i)
from Eq. ~1!, but, it is notAbelian for all model parameters
Let us consider two nearest-neighbor sites 1 and 2 that
active simultaneously,Ec(1)58, E(1)57, Ec(2)54,
E(2)53, E( i )50 for all i .2, anddE51. If site 1 topples
before 2, in the resulting configurationE(1)51 andE(2)
51. If the order of toppling is reversed, we obtainE(1)
50 andE(2)52, and the resulting configuration depends
the toppling order and thus the model isnon-Abelian. If we
choose the special parametersdE5k, andEc( i)52dk from
the Eq.~1! then the model isAbelian.

Manna@14# observed the dependence of the exponentt
on the lattice sizeL in systems with finite-size behavior an
described this with the relation

t~L !5t`2const./ ln~L !. ~7!
1-4
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SELF-ORGANIZED CRITICALITY: ROBUSTNESS OF . . . PHYSICAL REVIEW E 65 046141
This property has been explored by Lu¨beck and Usadel@35#
to determinet` for the BTW model. If we compare ou
exponents for the different lattice sizesL5256 @Fig. 1~a!#,
andL5512 ~Table I! we can see an opposite tendency int`

when the lattice size is increased. We explain this by
occurrence of the critical avalanche area~Fig. 2! that divides
the dependence into two main regions. First, where sm
avalanches dominate, a deviation from a power law is cle
evident for some parameters, and a second region, a po
law approximation, is valid for larger avalanches. The cr
cal avalanche area was not so clearly evident ifL5256 and
could probably shift the fits to higher values. Despite t
fact we assume that the exponents atL5512 are close to the
asymptotic values ifL→` and subsequently increasingL
one should approach the right values. Note that our ex
nents for the avalanche area atL5512 are equivalent o
higher than the asymptotic valuetd,`'1.33@35#. In our case
we do not know anything aboutt(L) dependence whenL
.512. Will t(L) dependence follow Manna’s observatio
given by Eq.~7!? Then the exponents determined here co
be higher. We should however be careful because Man
finding is not confirmed by any theory@18#.

For the second thresholdEc
B>16, we have observed

decreasing tendency of the average avalanche area^a& @Fig.
1~a!# when the concentrationc is increased up toc'10%.
We assume that the parametersc, andEc

B increase the disor
der in the lattice. This has an effect that small avalanc
contribute to decreasing the average avalanche area^a& as
observed in the magnets crackle experiments@29#. The role
of disorder was supported by the seismic observation@36#
where the redistributing of stress has an effect on the r
between small and big earthquakes in the favor sma
earthquakes.

The distributions of times between two avalanches foll
an exponential dependence. These results agree with th
sult obtained for the BTW model when the avalanches fl
down the slope@33#. For all parameters the distribution hav
the same form, an exponential dependence, only the cha
teristic time T0 is changed~Table I!. We therefore assum
that the frequency spectrums computed by randomly su
imposing avalanches, will have the same 1/f 2 properties as
the BTW model. The frequency spectrum computed from
direct realization of the avalanche signal@32# displays white
noise rather than a 1/f a dependence. We therefore have
modify the model to obtain a 1/f noise.

We have thus presented a deterministic,non-Abelian
model that shows a dependence of scaling exponents
model parameters similar to that found in the generali
Zhang model@23#. For the case where we allow a rando
distribution ofEc

B , our results appears to agree with the co
04614
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clusions in paper@16# where it was reported that quenche
randomness of thresholds has no effect on the SOC.

The discussion about the universality of deterministic a
stochastic models is therefore not closed yet@23,28#. We can
observe the importance of toppling mechanisms as there
clear dependence of scaling exponents on the model pa
eters. To support this hypothesis further we need to perfo
a more detailed study of the avalanche dynamics.

V. CONCLUSION

We have modified the BTW model using a second-hig
threshold randomly distributed in a lattice. The model h
thus two distinct thresholds, where the level of the seco
threshold and concentration of the sites with this level
introduced as parameters in the model. A lattice site with
higher threshold behaves as a defect. The model is class
as non-Abelian. Computer simulations show that the av
lanche dynamics changes distinctly when the model par
eters are changed.

We have observed an avalanche area distribution wh
cannot be approximated by a simple power-law depende
The distributions change when the avalanches are sm
then a critical avalanche area, and for certain parameters
curve does not follow a simple power law. For avalanch
larger than a critical avalanche area, the power-law appr
mation is valid, but the scaling exponent is not universal

We have also analyzed a possible presence of 1/f noise,
but our model does not show this behavior contrary to
BTW model. Clearly, certain modifications are needed to
tain 1/f behavior.

Further needed is to find out how to control real syste
in order to produce avalanches with the desired statist
parameters. We have demonstrated a reduction of the ave
avalanche area when the model parameters are appropri
set, and this type of control does not need feedback. If
has a control with feedback it could be possible to tune
threshold level or concentration of defects to reach a des
system response.
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