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Self-organized criticality: Robustness of scaling exponents
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We investigate a deterministic, conservative, undirected, critical height sandpile model with dissipation of an
energy at boundaries that can simulate avalanche dynamics. It was derived from the Bak-Tang-Wiesenfeld
model [P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. L&8, 381 (1987)] introducing an additional
second-higher threshold so the model has two distinct thresholds. Our computer simulations for a two-
dimensional lattice show that scaling properties of the model depend on the higher-threshold values and site
concentrations. These results are not therefore consistent with the present self-organized criticality hypothesis
where the scaling properties are independent of the model parameters.
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I. INTRODUCTION law behavior over two decades, proving that the vortex dy-
namics in the Bean state is characterized by avalanches of
Bak, Tang, and Wiesenfel(BTW) developed a simple many length scale§ll]. In these experiments the critical
model to describe the behavior of spatially extended dynamiexponents from avalanche size distributions were not con-
cal systems—systems with both temporal and spatial degreasant but they depended on the biased external magnetic
of freedom[1,2]. They introduced a theoretical framework, fields.
the so-called self-organized criticalisOCQ as a common Kadanoffet al. [12] numerically investigated scaling and
underlaying mechanism of ubiquitous I/ noise, self- multiscaling behavior of one- and two-dimensional SOC
similar fractal structures, and turbulence. The SOC ideanodels. They used different microscopic updating criteria to
stimulated numerous experimen{@-11], numerical[12—  see their influence on the scaling and multiscaling properties.
24], and theoretical25—-2§ studies. They observed the several universality classes and different
The sandpile was introduced as an example to illustratenodels with similar rules belong to the same class. All pre-
the basic idea of SOC in real systef®. The first tests of vious numerical models were defined with deterministic up-
the SOC model in granular materials have not confirmed thelate criteria although Mannd3] changed the microscopic
direct analogy between the dynamics of sandpiles and phys#tynamics using a stochastic relaxation rule that enables top-
cal systems exhibiting SO€3,4]. These results led to the pling of the sand in the randomly selected directions.
conclusion[5] that granular materials do not show SOC and The nonconservative SOC model was introduced by
it was proposed that first-order behavior may be the generiOlami, Feder, and Chistens¢®FC) [15]. Their model dis-
result and SOC might be the exceptional situation. Frettglayed robust scaling behavior for different strength of dis-
et al. [6] demonstrated experimentally the crossover fromsipation. On the other hand, the scaling exponent was non-
critical to noncritical behavior in a pile of rice. In one case, universal and depended on the elastic parameter. This model
for grains with a large aspect ratio the dynamics exhibitsyas thus used for a long time for systems that showed ava-
SOC, but not in another case for less elongated grains. Thegnche dynamics described by a power law, but with a non-
concluded that SOC is not as “universal” as was initially universal scaling exponefi11,23. However, recent results
assumed1,2], and the detailed mechanisms of energy dissifor larger latticeg24] than in the OFC papdrl5] confirm
pation plays an important role. Altshulet al. [8] observed universality of the scaling exponent in a wide range of the
that the nature of the sandpile base is a parameter which canodel parameter. This exponent agrees with the exponent of
modify the avalanche dynamics in slowly driven one-the GR model of earthquakes.nisi and Kertez[16] influ-
dimensional piles of beads. They also discussed the role afnced by the OFC model investigated its properties in a
quenched and unquenched randomness of the avalanche dsamework of a sandpile. They observed a difference be-
namics. tween the dissipative and conservative models when a
The notion of sandpiles were not the only model systemuenched randomness in the threshold values was intro-
to study SOC. There are also many other real systems thauced. They concluded that quenched randomness in dissi-
exhibit avalanche behavior, for example avalanchelike phepation models can destroy SOC, but if conservation is
nomena in magnetic materigl8,29], and a simple stick-slip present, then disorder is irrelevant. Head and Rodgdk
process of dragging a sandpaper across a catpétin this  inspired by the experiments of Fret¢ al. [6], have devel-
case the BTW model was extended to nonconservative sysped a model which incorporates both individual particle and
tems by replacing the updating rule so that the energy disseluster motions. This model exhibits avalanche distributions
pation was occurring at any time scale. In a superconductodescribed with stretched exponential or power-law depen-
a distribution of vortex avalanche sizes showed the powerdence that agree with the rice-pile experimditis
Zhang[25] introduced a variant of the BTW model where
an energy is continuous. All the energy from an unstable site
*Electronic address: jcernak@kosice.upjs.sk is distributed to the neighbors and after relaxation the site
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remains empty. Dhdi26] generalized the BTW model intro- reachedE(i)=E(i), and a relaxation takes place. An un-
ducing a set of thresholds that are assigned to each site. Hgable sitei lowers energy, that this is distributed among the

proved that the critical height BTW model is a subclass ofneighbor sites. This event is described by the relaxation rules
the mathematical structurébelian group, and named it

Abeliansandpile mode{ASM). If the configuration after the

avalanches does not depend on the order in which the relax- E()—E() - g AE(e), 2
ations of the active sites were performed, then the model
belongs to the ASM. Latef27], Dhar proved theAbelian E(i+e)—E(i+e)+AE(e), 3

properties of the stochastic Manna’s model. Based on the

renormalization-group transformation study, Pietronetral. )

[28] concluded that both the deterministic BTM/ and the ze AE(e)=Eq(i), 4
stochastic Manna’s modgl 3] belong to the same univesal-

ity class and microscopic details of an energy relaxation havgheree is a set of vectors from the sifeto its neighbors.

no effect on the scaling properties. This conclusion started &he neighbors that receive an energy can become unstable
broad discussion about a classification of deterministic andnd topple thus generating an avalanche. To the two well-
stochastic ASM as well as all known sandpile systemsnown rules expressed in Eq€) and (3) that describe a
[18,20,22,23,3D _ distribution of an energy, we added an additional rule &j.

The various models we have reviewed here thus showhat specifies the manner how an energy is distributed de-
support or limited support for the SOC hypothesis. Amongpending on the site position and corresponding threshold
there, a few papers motivated us to test the robustness @f (i), This rule tells us that an energy equal to the discrete
scaling propertiesi) the conclusion about robustness of the amount of E(i) is transferred from an unstable site to the
BTW model[2] andii) the rice-pile experimer{i5,7]. _neighbors. Specifically, in our model there are two distinct

The paper is organized as follows. In Sec. Il, the sandpilgymounts of transferred energy Hd) to be considered. The
model is defined. The results describing the avalanche are@|axation rules Eqs(2)—(4) are applied until that moment
distributions such as scaling exponents, and averageé av@yhen a stable configuration is reached again, for all sites
lanche areas at different parameters are presented in Sec. I (j) <E_(i). Obviously, during one avalanche an arbitrarily
This section also contains a small part concerned with thgnstaple sité can transfer the enerdg(i) a few times to be
noise properties of avalanche dynamics. We discuss our '®table, E(i)<E(i). A d-dimensional lattice with open
sults with simulations made previously in Sec. IV. In the lasty,ondaries has been investigated so an added energy can
section in Sec. V, we summarize our results and suggest valjiyy, outside the system, and an energy dissipation takes

ous ways to explore them further. places only at boundaries.
This model has been designed to have the specific prop-
Il. DEFINITION OF MODEL erties that could simplify it. It belongs to the critical height

models[12,14] with conservative relaxation rules and an un-
directed energy transféparticle sliding [12]. We character-
ize the model as deterministic with a frozen randomness of

bic lattice of linear sizé.. Each sité has assigned a dynami- . . L
- . . _the thresholdsE(i) [16]. This means that no quantity is
cal variableE(i) that generally represents a same phys'cafandomly perturbed as in other modgfs31,32.

guantity such as energy, grain density, stress, etc. A configJ—
ration {E(i)} classified as stable if for all the siteS(i)
<E., where E, is a threshold value. In our model the . RESULTS
threshold valueE, is not constant, but depends on the sité e shall here report the results obtained using computer
positioni, E(i). As consequence of this we have to gener-simylations of a deterministic, conservative, undirected, and
alize the condition for the stable configuratip(i)} and is  critical height sandpilé12,14 model defined by Eqs1)—
now: E(i) <E(i). There are many ways to defiig(i), but  (4). The simulations were carried out for the following pa-
in our caseE(i) has only two distinct values rameters:d=2, two-dimensional lattice of linear sizds
EA— o =256 and 512, randomly added energf=1, lower-
c (1) thresholdEZ=4, higher thresholE¢=8, 16, 32, 64, 128,
ES=2dk, k=234..., and 252, and with concentrations of sites with the higher
) ) ) ] ] threshold values in the range=0.05-50%. The second
whered is a dimension and is an integer number. For any tnreshold E2 and concentratiore, are also considered as
sitei we define the thresholfi(i) [Eq. (1)] in such a man-  yqde| parameters. The modelrisn-Abelian(Sec. IV) and
ner thatn randomly chosen sites have the higher valife e therefore allow toppling only at one randomly selected
and the remaining.®—n sites have the lower valUg}. The  site. Avalanches can be characterized by such properties as
concentration of sites with higher-threshold vaEg is de-  their size, area, and lifetimf20,22,23. We measure only
notedc, andc=100n/LY [%)]. one property, the avalanche areathat is the number of
Let us assume that a stable configuraf&tdj)} is given, lattice sites that have relaxed at least one during the ava-
and that we select a sifeat random and increade(i) by  lanche[1,23].
some amountSE. When an unstable configuration is  The simulations in the two-dimensional lattice of the lin-

We follow a notation presented by Bihaet al. [23] to
define a sandpile model. Consided-@imensional hypercu-

Ec()=
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FIG. 1. Computer simulations carried out on a two-dimensional lattice of the linedkr si2&6, with the lower threshoIE§:4. (a) The
exponentr, versus concentration for various threshcﬂi&r— 8(*), 16(0), 32(x), 64(1), and 128@). (b) The average area of avalanches
(a) versus the concentratianfor different threshold€Z . These curves show minima for certain parameteasdES .

ear sizeL =256 show that the avalanches have am#éisat =1—8%) and are consistent with results presented in Fig.
can span a wide range of sizes up to the whole system. ThEb). Comparisons of two avalanche area distributiéta) -
distribution of avalanche ared#®(a) obeys the power-law for two distinct concentrations=1 and 8 % are presented in
P(a)xa ", as it was expected. For the model parameteré:ig- 2. This shows that there is an essential difference for

mentioned above we have determined the critical exponen@mall avalanche areas<1.8x 10°. For the concentration

small value of the higher thresholf , 4<E<16, the ex- lanche area distribution cannot be fitted to a power law. For
’ c '
ponents weakly depend on the concentratioWhen the larger avalanches 126103<a<2><1QS, the avalanche area
higher values oE®, EB=32 are considered, the exponentsd'smb“_t'on obeys the power law with=1.451. For a con-
reach maxima at concentratian=19%. We have observed, Centrationc==8%, we see that aa~200 the slope of the
that for a concentration 0.85c< 1%, the curves deviated CUrve changes. A shift in the ratio between small and big
from the expected power-law dependence due to the fact th&t alagches Itowards slmalfr avalaggcherz]g 200|) W?]S ob-
it was not possible to fit the results to a power law. TheS€rve ._For_arger avaianc 852X 10°, the ava anche area
corresponding values of exponents are thus missing in thig's‘t”but'o_n is approximated by the power law with the ex-
graph. We can therefore conclude that in this range of conPonent 7=1.279. Both avalanche area distributions thus
centrationc, the avalanche are(a) does not show scaling scgle for larger avalanches, but the scaling exponents are not
properties universal and depend on the parameters.

The average avalanche argg is sensitive to the choice We have analyzed the timkt bet\_/veen two avalanches
of parameters, as it is presented in Figh)1 By increasing L33 and the power spectrum of a signé(t) generated by
the higher threshold valuds? at a constant concentratian the avalan_che dynam!cs ‘.N'th an explicitly defined time scale
one gets decreasing avalanche af@asWhen concentration [32]. The time signal is given as
c is changed at consta, EE=16 we have observed de-
creasing the avalanche arg@ for concentrations 0.05c¢ x(t)zz a;o(t—t;). (5)
<10% down to a minimum, and subsequent increasing val- j
ues when the concentration increases. In the concentration
range 0.05:c<10%, the equatiofa)xc™“ is valid, and Here,a; denotes the area ¢th avalanches ang is the time
wherea=0.177 Egzgz), 0.271 EE=64), and 0.388 |£CB of its occurrence. We denote the time between two ava-
=128). By tuning these parameters, we can obtain a state 3
where the average avalanche aréasreach minima. TABLE |. Critical exponentsr,, average avalanche aregs,

We have also simulated the model in a larger two-and characteristic time& T, for different threshold€g, and con-
dimensional lattice of linear size=512 to eliminate the Centrations. The sandpile model is two-dimensional, conservative,
effect of finite sample size on the characteristic exponent&ndirected, and deterministic of a linear S"Zecgslz- Th(e)sa"a'
7. The results are presented in the Table I. The characteriéa-m‘:h(‘jes Wg":hf?‘reﬁs are f”l)m the interaal 1.8X10°~2X 10" are
tic exponentsr, are smaller than in the previous case whent"Sidered to fit the critical exponeny.

L =256, but it is reasonable to assume that they are closer o

B
the exact values. The dependence of the expongnis the Ee ¢ a (s ATo
concentratiorc at the higher threshol&E =128 shows the 128 1 1.451 1404 1.733
maximum exponent,=1.451 at a concentration=1%. 128 2 1.373 1135 1.797
When the concentratiooincreases t@= 2%, the exponent 128 4 1.318 937 1.919
decreases ta,=1.279, similarly as in the Fig.(&). The 128 8 1.279 808 2.153
results concerning to the average avalanche &agaobey 252 10 1.279 419 2.289

the power law(a)ecc™* with «=0.272 (fit is valid for c
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avalanches depends on the model parameters. The scaling
exponentr, determined in the intermediate region is not uni-
versal. The model does not show any evidence binbise.

IV. DISCUSSION

The critical point in SOC systems is an attractor which is
reached by starting far from equilibrium, and the scaling
properties of the attractor are insensitive to the parameters of
the model. To reach this state no tuning of parameters is
necessary from the outside, i.e., the system organizes itself
[1,2].

Bak et al.[2] tested the robustness of scaling exponent of

FIG. 2. Comparison of the avalanche area distributi®(e) for the BTW model by removing as many as 25% of the lattice
two different concentrations=1% andc=8%, where the remain- bpnds, l_)Ut the avalan_che dynamics still led to a pOW_er-IaW
ing parameters are: the lower thresh@@=4, higher threshold ~distribution. By removing about 10% of the bounds, still no
EB=128, linear lattice sizé.=512. Corresponding exponents are change in the exponent was detected. This test confirmed the
determined:r,= 1.451+ 0.003 €=1%), andr,=1.279-0.003 ¢ SOC hypothesis. We chose another type of defect in order to
=8%) for avalanches from the interval 1.8x 10°~2x 1CP. increase the disorder in the BTW model. In our model there

is one of two distinct threshold€q. (1)] assigned to each
lanches asAt=t;—t;_;. The original time signalX(t) is site. Lattice sites with a higher threshold are considered for
transformed using the Fourier transform into the frequencyattice defects. The model defined in such a manner has a
domain. The square of the amplitudes of the transforme@ghort-range spatial correlation introduced into the update

signal at a given frequency range define the power spectrufitles. This means that the toppling of a defective site can
influence more than @ sites as in the BTW model at one

2 relaxation. An unstable site also makes its surroundings un-
(6) stable and not only neighbors and a collective toppling starts.
A correlation length is proportional to the rati€f/E% . The
defect behaves as a local energy reservoir. It can absorb and
. ) discharge more energy than its neighbors, so the avalanche
parameters. =256, E¢=128, andc=1% with no evidence dynamics near defects is changed. We can observe the dif-
of 1/‘; noise. We see a short-frequency interval wh8€)  fgrent nature of the defects introduced beff@kand those
~1/f*. The fast Fourier transformation was computed fromp esented here. By removing bounds in a lattice, this causes
N=524288 samplef34]. o _ a permanent barrier to avalanche toppling and some parts of
We have observed that the distributioRgAt) of the in- 5 system remain inactive. On the other hand, a site which
tervals At between avalanches exponentially decays agehaves as an energy reservoir enables avalanche spreading
P(At)xexp(-AUATo). The characteristic intervabTo IS ang can introduce a time deldgn accumulation of enery
sensitive tg the change of a concentratiorand higher  ang short range correlatioria relaxation into the dynamics
thresholdE¢ , as is shown in Table I. of the system. Our model displays unexpected properties
It was observed that the area distribution consists of thregsec. 1)), in that the avalanche dynamics depends on the
main parts:(i) region of small avalanchesii) regions of  choice of parameters. This finding disagrees with the SOC
intermediate, andiii) regions of larger avalanches that spanhypothesig1,2].
whole sample. The boundary between small and intermediate The model is a special case of the A$®6,27] when the
elements of the integer matrix are defined a\;; =E(i)
10°F from Eq. (1), but, it is notAbelianfor all model parameters.
i Let us consider two nearest-neighbor sites 1 and 2 that are
o active simultaneously,E;(1)=8, E(1)=7, E.(2)=4,
10¢ E(2)=3, E(i)=0 for alli>2, andSE=1. If site 1 topples
E before 2, in the resulting configuratida(1)=1 andE(2)
=1. If the order of toppling is reversed, we obtai{1)

T—oo

LT —i27f
S(f)= lim ﬁdetX(t)e

The resulting power spectrum is shown in Fig. 3 for the

s(f)

1075‘ =0 andE(2)=2, and the resulting configuration depends on
i the toppling order and thus the modelnsn-Abelian If we
6| choose the special paramet@is=k, andE_(i) =2dk from
10k the Eq.(1) then the model if\belian
10 10 i, 10 10 Manna[14] observed the dependence of the exponents

on the lattice siz& in systems with finite-size behavior and

FIG. 3. The power spectru(f) for a time signaX(t) defined ~ described this with the relation
by Eq. (5), andfy is Nyquist frequency. The avalanche dynamics
was generated by parametelrs= 256, EE=128, andc=1%. 7(L)=7,—const./I{L). (7)
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This property has been explored bylack and UsaddiB5]  clusions in papef16] where it was reported that quenched
to determiner,, for the BTW model. If we compare our randomness of thresholds has no effect on the SOC.
exponents for the different lattice sizés=256 [Fig. 1(a)], The discussion about the universality of deterministic and
andL =512 (Table ) we can see an opposite tendencyrin  stochastic models is therefore not closed[2&,28. We can
when the lattice size is increased. We explain this by arobserve the importance of toppling mechanisms as there is a
occurrence of the critical avalanche af€#g. 2) that divides clear dependence of scaling exponents on the model param-
the dependence into two main regions. First, where smalkters. To support this hypothesis further we need to perform
avalanches dominate, a deviation from a power law is clearly more detailed study of the avalanche dynamics.

evident for some parameters, and a second region, a power-

law approximation, is valid for larger avalanches. The criti- V. CONCLUSION

cal avalanche area was not so clearly evideht=256 and . ) )
could probably shift the fits to higher values. Despite this e have modified the BTW model using a second-higher

fact we assume that the exponentd at512 are close to the threshold randomly distributed in a lattice. The model has
asymptotic values ilL—o and subsequently increasirg thus two distinct thresholds, where the level of the second

one should approach the right values. Note that our eXpot_hreshold and concentration of the sites with this level are
nents for the avalanche area lat=512 are equivalent or introduced as parameters in the model. A lattice site with the
higher than the asymptotic valug ..~ 1.33[35]. In our case higher threshold behaves as a defect. The model is classified

we do not know anything about(L) dependence wheh as non-Abelian Computer simulations show that the ava-
>512. Will 7(L) dependence follow Manna's observation lanche dynamics changes distinctly when the model param-

given by Eq.(7)? Then the exponents determined here coulFters are changed.

be higher. We should however be careful because Manna’s We have observed an avalanche area distribution which

finding is not confirmed by any theofiL8] cannot be approximated by a simple power-law dependence.
For the second thresholHE=16. we .have observed a The distributions change when the avalanches are smaller
c— ’

decreasing tendency of the average avalanche(ajekFi then a critical avalanche area, and for certain parameters the
9 y € averag 9 curve does not follow a simple power law. For avalanches
1(a)] when the concentration is increased up t@~10%.

; . larger than a critical avalanche area, the power-law approxi-
We assume that the parameteysndES increase the disor- g b PP

: . - mation is valid, but the scaling exponent is not universal.
der in the lattice. This has an effect that small avalanche g exp

. ) S We have also analyzed a possible presence fohaise,
contribute to decreasing the average avalanche @p@Ss 1,4 our model does not show this behavior contrary to the
obsgrved in the magnets crackle exp?””"_'é@- The role BTW model. Clearly, certain modifications are needed to ob-
of disorder was supported by the seismic observai&s] tain 1/ behavior
where the redistributin_g of stress has an effect on the ratio Further needéd is to find out how to control real systems
between small and big earthquakes in the favor smalle(n order to produce avalanches with the desired statistical
earthquakes. parameters. We have demonstrated a reduction of the average

The distributions of times between two avalanches fOHOWavaIanche area when the model parameters are appropriately

an exponential dependence. These results agree with the '€t and this type of control does not need feedback. If one

Zu“ ot;;aln(?d fo:;:;heFBTvl\{ model "che”tghed?“t"".‘t')aQFhez flovhas a control with feedback it could be possible to tune the
own the slop¢33]. For a parameters the diStnbution NAVe y, ashold level or concentration of defects to reach a desired
the same form, an exponential dependence, only the charagystem response

teristic time T, is changed(Table ). We therefore assume
that the frequency spectrums computed by randomly super-
imposing avalanches, will have the samé®Iproperties as
the BTW model. The frequency spectrum computed from a The author thanks A. T. Skjeltorp for the stimulus to write
direct realization of the avalanche sigiap] displays white  this paper, for helpful remarks, and for kind hospitality at the
noise rather than a fiy dependence. We therefore have toInstitute for Energy Technology at Kjeller, where part of this
modify the model to obtain a fL/noise. work was done. We also thank G. Helgesen for his reading of
We have thus presented a deterministimn-Abelian  the manuscript. We acknowledge the financial support of the
model that shows a dependence of scaling exponents aBlovak Ministry of Education Grant: Nor/Slov. We are also
model parameters similar to that found in the generalizedhankful for computational support from A. Dirner, J. Ondrej
Zhang mode[23]. For the case where we allow a random (MOSIX PC cluster at Home University and J. Astalos
distribution ofEE’, our results appears to agree with the con-(CONDOR PC cluster at Technical University Kos.

ACKNOWLEDGMENTS

[1] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. LBf. 381 40 (1989.

(1987. [4] G.A. Held, D.H. Solina Il, D.T. Keane, W.J. Haag, P.M. Horn,
[2] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev38, 364 and G. Grinstein, Phys. Rev. Le&5, 1120(1990.

(1988. [5] S.R. Nagel, Rev. Mod. Phy§4, 321(1992.

[3] H.M. Jaeger, C.-H. Liu, and S.R. Nagel, Phys. Rev. L&%. [6] V. Frette, K. Christensen, A. Malthe/Bmssen, J. Feder, T.

046141-5



JOZEF ERNAK PHYSICAL REVIEW E 65 046141

Jbtssang, and P. Meakin, Natufeondon 379 49 (1996. [21] D.V. Ktitarev, S. Libeck, P. Grassberger, and V.B. Priezzheyv,
[7] K. Christensen, A. Corral, V. Frette, J. Feder, and /Esdng, Phys. Rev. B51, 81 (2000.
Phys. Rev. Lett77, 107 (1996. [22] S. Libeck, Phys. Rev. B1, 204 (2000.
[8] E. Altshuler, O. Ramos, C. Martez, L.E. Flores, and C. Noda, [23] O. Biham, E. Milshtein, and O. Malcai, Phys. Rev. @3,
Phys. Rev. Lett86, 5490(2002. 061309(2001).
[9] K.L. Babcock and R.M. Westervelt, Phys. Rev. L&, 2168 [24] S. Lise and M. Paczuski, Phys. Rev6B, 036111(2001).
(1990. [25] Y.C. Zhang, Phys. Rev. Let63, 470(1989.
[10] H.J.S. Feder and J. Feder, Phys. Rev. L&#f.2669(1991). [26] D. Dhar, Phys. Rev. Let64, 1613(1990.
[11] S. Field, J. Witt, F. Nori, and X. Ling, Phys. Rev. Left4, [27] D. Dhar, Physica 263 4 (1999.
1206 (1995. [28] L. Pietronero, A. Vespignani, and S. Zapperi, Phys. Rev. Lett.
[12] L.P. Kadanoff, S.R. Nagel, L. Wu, and S.-M. Zhou, Phys. Rev. 72, 1690(1994.
A 39, 6524(1989. [29] J.P. Sethna, K.A. Dahmen, and C.R. Myers, Natfiu@ndon
[13] S.S. Manna, J. Phys. 24, L363 (199)). 410, 242(2002.
[14] S.S. Manna, Physica A79 249(199)). [30] C. Tebaldi, M. De Menech, and A.L. Stella, Phys. Rev. Lett.
[15] Z. Olami, H.J.S. Feder, and K. Christensen, Phys. Rev. Lett. 83, 3952(1999.
68, 1244(1992. [31] S.-D. Zhang, Phys. Lett. 233 317(1997.
[16] .M. Janosi and J. Kertgz, Physica 200, 179(1993. [32] J. Davidsen and H.G. Schuster, Phys. Re%2E6111(2000.
[17] K.E. Bassler and M. Paczuski, Phys. Rev. L&, 3761 [33] H.J. Jensen, K. Christensen, and H.C. Fogedby, Phys. Rev. B
(1998. 40, 7425(1989.
[18] E. Milshtein, O. Biham, and S. Solomon, Phys. Re\s&: 303 [34] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetter-
(1998. ling, Numerical Recipes in GCambridge University Press,
[19] D.A. Head and G.J. Rodgers, e-print cond-mat/9805186v2. Cambridge, England, 2001
[20] A. Chessa, H.E. Stanley, A. Vespignani, and S. Zapperi, Phyd.35] S. Libeck and K.D. Usadel, Phys. Rev.55, 4095(1997.
Rev. E59, R12(1999. [36] M. Wyss and S. Wiemer, Scien@90, 1334(2000.

046141-6



